On the use of a proton path probability map for proton computed tomography reconstruction

RIS ID

36995

Publication Details

Wang, D., Mackie, T. and Tome, W. (2010). On the use of a proton path probability map for proton computed tomography reconstruction. Medical Physics, 37 (8), 4138-4145.

Abstract

Purpose: To describe a method to estimate the proton path in proton computed tomography (pCT) reconstruction, which is based on the probability of a proton passing through each point within an object to be imaged. Methods: Based on multiple Coulomb scattering and a semianalytically derived model, the conditional probability of a proton passing through each point within the object given its incoming and exit condition is calculated in a Bayesian inference framework, employing data obtained from Monte Carlo simulation using GEANT4. The conditional probability at all of the points in the reconstruction plane forms a conditional probability map and can be used for pCT reconstruction. Results: From the generated conditional probability map, a most-likely path (MLP) and a 90% probability envelope around the most-likely path can be extracted and used for pCT reconstruction. The reconstructed pCT image using the conditional probability map yields a smooth pCT image with minor artifacts. pCT reconstructions obtained using the extracted MLP and the 90% probability envelope compare well to reconstructions employing the method of cubic spline proton path estimation. Conclusions: The conditional probability of a proton passing through each point in an object given its entrance and exit condition can be obtained using the proposed method. The extracted MLP and the 90% probability envelope match the proton path recorded in the GEANT4 simulation well. The generated probability map also provides a benchmark for comparing different path estimation methods. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3453767]

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1118/1.3453767