Measurement of dose reductions for superficial x-rays backscattered from bone interfaces.
RIS ID
24814
Abstract
Accurate measurement and knowledge of dose delivered during superficial x-ray radiotherapy is required for patient dose assessment. Some tumours treated near the surface (within the first few centimetres) can have large posterior bone structures. This can cause perturbations to dose delivered due to changed backscatter contributions from the bony structure as compared to full water or tissue scattering conditions. Measured results have shown that up to 7.5% of Dmax reductions in dose can occur near the water/bone interface for 100 kVp, using 10 cm diameter field sizes when a 1 cm thick slab of bone is located at 2 cm depth. At smaller field sizes such as 2 cm diameter these values reduce to 2% for the same energy. Larger variations (up to 12.5% of maximum) have been seen at the phantom surface when the bone layer is directly behind the point of interest (within 0.5 mm) and smaller effects (up to 5% of maximum) at depths down to 5 cm. Interesting to note is the fact that for larger field sizes, an increase in percentage dose is found at the water/bone interface due to the production of low energy backscattered electrons similar to the effect found in lead. However, they are much smaller in magnitude and thus would not cause any significant dosimetric effects. In the case where large bony structures lie relatively close to the surface and the tissue above this region is being treated, a dosimeter such as radiochromic film can be used to estimate the dose reduction that may occur due to the changed backscatter conditions.
Publication Details
Butson, M., Cheung, T. & Yu, P. K.N. (2008). Measurement of dose reductions for superficial x-rays backscattered from bone interfaces.. Physics in Medicine and Biology, 53 (17), 329-336.