One dimensional nanostructures as electrode materials for lithium ion batteries with improved electrochemical performance

RIS ID

31519

Publication Details

Wang, G., Shen, X. Yao, J. (2009). One dimensional nanostructures as electrode materials for lithium ion batteries with improved electrochemical performance. Journal of Power Sources, 189 (1), 543-546.

Abstract

One-dimensional (1D) nanosize electrode materials of lithium iron phosphate (LiFePO4) nanowires and Co3O4–carbon nanotube composites were synthesized by the hydrothermal method. The as-prepared 1D nanostructures were structurally characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. We tested the electrochemical properties of LiFePO4 nanowires as cathode and Co3O4–carbon nanotubes as anode in lithium-ion cells, via cyclic voltammetry and galvanostatic charge/discharge cycling. LiFePO4 nanorod cathode demonstrated a stable performance over 70 cycles, with a remained specific capacity of 140 mAh g−1. Nanocrystalline Co3O4–carbon nanotube composite anode exhibited a reversible lithium storage capacity of 510 mAh g−1 over 50 cycles. 1D nanostructured electrode materials showed strong potential for lithium-ion batteries due to their good electrochemical performance.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.jpowsour.2008.10.044