Controlled array of ferritin in tubular nanostructure

RIS ID

25888

Publication Details

Kim, M., Shin, K., Kim, S., Spinks, G. Maxwell. Kim, S. (2008). Controlled array of ferritin in tubular nanostructure. Macromolecular Rapid Communications, 29 552-556.

Abstract

We have demonstrated that uniform and continuous poly(2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) tubular core-shell nanostructures containing linear features of ferritin nanoparticles can be directly fabricated using two immiscible solutions employing coaxial electrospinning. By adjusting the concentration of PAMPS as the outer solution in the coaxial electrospinning process, the width of a one dimensional (1D) array of ferritin could be accurately controlled. We demonstrate the formation of a nearly linear chain of individual ferritin particles encapsulated in a PAMPS nanofiber of 40 nm diameter. The ability to accurately control the width of the ferritin 1D arrays encapsulated in tubular nanostructures is a key component in determining the efficiency and performance of nanodevices. The demonstrated method of forming tubular nanostructures containing inner 1D particle arrays can also be extended to other materials with potential applications in nanoelectronic devices, such as nanobiosensors and batteries.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1002/marc.200700849