Geometrical optimization of a particle tracking system for proton computed tomography

RIS ID

44497

Publication Details

Penfold, S. N., Rosenfeld, A. B., Schulte, R. W. Sadrozinksi, H. W. (2011). Geometrical optimization of a particle tracking system for proton computed tomography. Radiation Measurements, 46 (12), 2069-2072.

Abstract

Proton computed tomography (pCT) is currently being developed as an imaging modality for improving the accuracy of treatment planning in proton therapy. A tracking telescope comprising eight planes of single-sided silicon strip detectors (SSDs) forms an integral part of our present pCT design. Due to the currently maximum available Si wafer size, the sensitive area of 9 cm × 18 cm of the pCT tracker requires each tracking plane to be composed of two individual SSDs, which creates potential reconstruction problems due to overlap or gaps of the sensitive SSD areas. Furthermore, the spacing of the tracking planes creates competing design requirements between compactness and spatial resolution. Two Monte Carlo simulations were performed to study the effect of tracking detector location on pCT image quality. It was found that a “shingled” detector design suppressed reconstruction artefacts and, for the spatial resolution of the current detector hardware, reconstructed spatial resolution was not improved with a tracking separation of greater than 8 cm.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.radmeas.2011.04.032