Characterisation and aerosolisation of mannitol particles produced via confined liquid impinging jets

RIS ID

27220

Publication Details

Tang, P., Chan, H., Chiou, H., Ogawa, K., Jones, M., Buckton, G., Prud'homme, R. & Raper, J. A. (2008). Characterisation and aerosolisation of mannitol particles produced via confined liquid impinging jets. International Journal of Pharmaceutics, 367 (1/2), 51-57.

Abstract

Mannitolparticles, produced by spray drying (SD), have been used commercially (Aridol™) in bronchial provocation test. In this study, we propose an alternative method to produce inhalable mannitol powders. The elongated mannitol particles (number median length 4.0 μm, and axial ratio of 3.5) were prepared using a confined liquid impinging jets (CLIJs) followed by jet milling (JM). Spray dried and jet milled raw mannitol particles were compared in an attempt to assess the performance of the particles produced by the new method. Aerosol performance of the three different powders (CLIJ, SD, and JM) was relatively poor (fine particle fraction or FPFloaded below 15%) when dispersed by the Rotahaler. Dispersion through the Aeroliser led to better aerosol performance of the CLIJ mannitol (FPFloaded 20.3%), which is worse than the JM (FPFloaded 30.3%) and SD mannitolparticles (FPFloaded 45.7%) at 60 L/min, but comparable (FPFloaded 40.0%) with those of the JM (FPFloaded 40.7%) and SD (FPFloaded 45.5%) powders at 100 L/min. Hence, the optimum use of these elongated mannitol particles can be achieved at increased air flow with a more efficient inhaler. In addition to crystallinity, morphology, and particle size distribution, the surface energies of these powders were measured to explain the differences in aerosol performance. A major advantage of using the CLIJ method is that it can be scaled up with a good yield as the precipitate can be largely collected and recovered on a filter, compared with spray drying which has a low collection efficiency for fine particles below 2 μm.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.ijpharm.2008.09.024