Strain, stress and stress relaxation in oxidized ZrCuAl-based bulk metallic glass



Publication Details

Haratian, S., Niessen, F., Grumsen, F., Nancarrow, M., Pereloma, E., Villa, M., Christiansen, T. & Somers, M. (2020). Strain, stress and stress relaxation in oxidized ZrCuAl-based bulk metallic glass. Acta Materialia, 200 674-685.


© 2020 Surface engineering of Zr51.3Al8.5Cu31.3Ni4Ti4.9 bulk metallic glass (BMG) by gaseous oxidizing below the glass-transition temperature is investigated as a means to introduce compressive residual stress in the surface region. The ZrCuAl-based BMG was exposed to an extremely low oxygen partial pressure of 10−41 bar at 600 K for 60 h. The oxidizing treatment led to the formation of an internal oxidation zone, consisting of finely dispersed nano-crystalline cubic ZrO2 (c-ZrO2), metallic regions inclined with the surface and Cu-hillocks at the surface. The stresses introduced by the volume expansion associated with oxidation were evaluated from i) the lattice strains within c-ZrO2, as determined with an X-ray diffraction (XRD) based method, and ii) strain-relaxation as a response to annular focused ion beam (FIB) milling, as monitored with digital image correlation (DIC). XRD analysis yielded -1.5 GPa (compressive stress) in the nano-crystalline c-ZrO2, while the strain relaxation monitored with FIB-DIC analysis indicated compressive residual stresses of −1.4 GPa in the internal oxidation zone. The strains and stresses determined with the independent measurement methods are discussed. The quantitative macro-strains are discussed in relation to the microstructural features and stress relaxation mechanisms during evolution of the internal oxidation zone.

Please refer to publisher version or contact your library.



Link to publisher version (DOI)