Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries
RIS ID
142509
Abstract
© 2020 Elsevier Ltd Core-shell Mn3O4/carbon (Mn3O4@C) hybrid fiber are synthesized by encapsulating Mn3O4 nanoparticles (NPs) in the hollow carbon fibers (Mn3O4@HCFs) according to the coaxial electrospinning technique. As the aqueous Zinc ion battery (ZIBs) cathode, the well-defined Mn3O4@HCFs with 12.7 wt % carbon exhibits superior rate capability (215.8 and 115.7 mAh g−1 at 0.3 and 2.0 A g−1, respectively) and excellent cycling stability (225 mAh g−1 remaining at the current density of 400 mA g−1 after 1300 cycles). The outstanding electrochemical performances are attributed to the core-shell structure of the Mn3O4@HCFs with much void spaces. The carbon framework on the surface of the Mn3O4 NPs can not only relieve the volume expansion of Mn3O4 during the discharging, but also optimize the electron transportation inside these fibers for the electrode. Furthermore, the amorphous carbon shell could also reduce the dissolution of the Mn3O4 NPs during cycling. This work will provide a new pathway of a technique for enhancing the manganese-based cathode materials for the high-powered rechargeable aqueous ZIBs.
Publication Details
Long, J., Yang, Z., Yang, F., Cuan, J. & Wu, J. (2020). Electrospun core-shell Mn3O4/carbon fibers as high-performance cathode materials for aqueous zinc-ion batteries. Electrochimica Acta, 344