Phase transformation and structure evolution of a Ti-45Al-7.5Nb alloy processed by high-pressure torsion

RIS ID

133569

Publication Details

Li, X., Dippenaar, R. J., Han, J., Kawasaki, M. & Liss, K. (2019). Phase transformation and structure evolution of a Ti-45Al-7.5Nb alloy processed by high-pressure torsion. Journal of Alloys and Compounds, 787 1149-1157.

Abstract

Intermetallic γ-based titanium aluminides of Ti-45Al-7.5Nb have been subjected to high-pressure torsion (HPT) processing. Significant grain refinement has been achieved from ∼10 μm to ∼30 nm, leading to the improvement in both physical and mechanical properties. Complementary studies correlated the microstructure, phase transformation behavior and the enhancement of mechanical properties. Neutron and X-ray diffraction revealed that an ongoing order-disorder transformation occurs by HPT processing, resulting in large heterogeneous behavior between the surface-near and the median layers of the disk. While the γ-phase almost disappeared underneath the surface region, such order/disorder phase transformation consistently decreases towards the middle-thickness section of the samples. A low bulk texture index is consistent with grain rolling and swirling rather than slip deformation. Vickers micro-hardness indentation confirms the improvement of hardness from 308 H v to 605 H v . For the first time, the present work demonstrates heterogeneity in structural transformation, such as displacive transformation and order/disorder transformation, which can be compared to earlier reported inhomogeneity in mechanical properties and microstructure within bulk nanostructured materials that were processed by HPT.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.jallcom.2019.02.174