Electrodeposition of nickel-molybdenum nanoparticles for their use as electrocatalyst for the hydrogen evolution reaction
RIS ID
81494
Abstract
Nickel-Molybdenum nanoparticles are produced using current pulses to electrodeposit alloys from a NiSO4, Na2MoO4 and Na3C6H5O7 electrolytic bath. Glassy carbon discs of 1mm and 2.5mm diameter and carbon felt are used as working electrodes. The electrocatalytic activity of the deposits for Hydrogen Evolution reaction (HER) was evaluated from measurements of the currents obtained when performing cyclic voltammetry experiments on a 0.72 M H2SO4 electrolyte. From Tafel plots a Volmer Heyrovsky mechanism can be in- ferred. The deposits on glassy carbon electrodes were inspected by atomic force microscopy (AFM) revealing particles with diameters between 25 to 120 nm. SEM was used to confirm the electrodeposition of NiMo on carbon felt fibers. At high current density pulses deposits with good catalytic properties for HER are obtained.
Publication Details
Videa, M., Crespo, D., Casillas, G. & Zavala, G. (2010). Electrodeposition of nickel-molybdenum nanoparticles for their use as electrocatalyst for the hydrogen evolution reaction. Journal of New Materials for Electrochemical Systems, 13 (3), 239-244.