An investigation on the hydrogen storage properties and reaction mechanism of the destabilized MgH2-Na3AlH6 (4:1) system
RIS ID
74914
Abstract
A novel hydrogen storage composite system, was prepared by mechanochemical milling, and its hydrogen storage properties and reaction mechanism were studied. Temperature-programmed desorption results showed that a mutual destabilization effect exists between the components. First, Na3A1H6 reacts with MgH2 to form a perovskite-type hydride, NaMgH3, A1, and H2 at a temperature of about 170 degrees celcius, which is about 55 degrees celcius lower than the decomposition temperature of as-milled Na3A1H6. Then, at a temperature of about 275 degrees celcius, the as-formed A1 can destabilize MgH2 to form the intermetallic compound Mg17A112 which is accompanied by the self-decomposition of the residual MgH2. This temperature is about 55 degrees celcius lower than the decomposition temperature for as-milled MgH2. Furthermore, when heated up to 345 degrees celcius, NaMgH3 starts to decompose into NaH, Mg, and H2, which is followed by the decomposition of NaH at a temperature of about 370 degrees celcius. Rehydrogenation processes show that Mg17A112 and NaMgH3 are fully reversible. It is believed that the Mg17A112 and NaMgH3 Mg17Al12 and NaMgH3 formed in situ provide synergetic thermodynamic and kinetic destabilization, leading to the dehydrogenation of MgH2, which is responsible for the distinct reduction in the operating temperatures of the as-prepared MgH2-Na3AlH6 4 to 1 composite system.
Publication Details
Ismail, M., Zhao, Y. & Dou, S. X. (2013). An investigation on the hydrogen storage properties and reaction mechanism of the destabilized MgH2-Na3AlH6 (4:1) system. International Journal of Hydrogen Energy, 38 (3), 1478-1483.