Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis

RIS ID

144501

Publication Details

Zheng, X., You, J., Fan, J., Tu, G., Rong, W., Li, W., Wang, Y., Tao, S., Zhang, P., Zhang, S., Shen, S., Li, J., Huang, L. & Sun, S. (2020). Electrodeposited binder-free Sb/NiSb anode of sodium-ion batteries with excellent cycle stability and rate capability and new insights into its reaction mechanism by operando XRD analysis. Nano Energy, 77

Abstract

© 2020 Elsevier Ltd Antimony has attracted a substantial amount of attention and has been proven to be the most promising anode material for sodium-ion batteries (SIBs) due to its suitable sodium insertion plateaus and high theoretical storage capacity. However, the dramatic volume expansion (up to 390%) during sodiation/desodiation results in severe structural deterioration and rapid capacity decay. As a consequence, antimony anodes exhibit poor cycling stability. Herein, we report a binder-free Sb/NiSb alloy prepared by a controllable electrodeposition process. The inactive nickel provided both good conductivity and structural reinforcement to reduce the large volume expansion/contraction, which endowed the Sb/NiSb anode with excellent cycle stability (521 mAh∙g−1 upon 100 cycles) and rate performance (above 400 mAh∙g−1 at 2000 mA∙g−1) that were superior to those of the bare Sb anode. The excellent Na storage performance of the Sb/NiSb anode was attributed to the synergistic effect of its cauliflower-like structure and the alloying effect of the Sb/NiSb. The operando XRD results indicated that the reaction mechanism resembled that of analogous transition metal antimonides. In addition, a stable solid electrolyte interface (SEI) was observed with operando XRD and HR-TEM of the Sb/NiSb anode. The cost-effective preparation of Sb/NiSb composite anodes and their excellent electrochemical properties offer the potential to prepare a broad spectrum of binder-free metallic alloys (e.g., Bi and Sn) as high-performance anode materials for SIBs.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/j.nanoen.2020.105123