Interface-Amorphized Ti3C2@Si/SiO x@TiO2 Anodes with Sandwiched Structures and Stable Lithium Storage
RIS ID
143585
Abstract
© 2020 American Chemical Society. A new two-dimensional material (MXene) has been compounded lately with silicon as anodes for lithium-ion batteries to achieve excellent lithium storage performances on account of its unique properties, such as high electrical conductivities, low ion diffusion barrier, and large surface area. However, the exposed silicon particles may lead to fast capacity decaying upon direct contact with the electrolyte. To solve this issue, the porous silicon and SiOx are introduced into Ti3C2Tx to construct a conductive network, and then Ti3C2@Si/SiOx are covered with amorphous TiO2 to make a sandwiched Ti3C2@Si/SiOx@TiO2 composite. Owing to the cooperation of the Ti3C2 matrix, Si/SiOx interlayer, and amorphous TiO2 layer, the reversible capacity of the Ti3C2@Si/SiOx@TiO2 composite with a sandwiched structure can be maintained at 939 mA h g-1 after 100 cycles and enhanced capacity retention capabilities in the initial 10 cycles can be came ture. The combination of these four components also makes the Ti3C2@Si/SiOx@TiO2 composite material a promising application prospect in lithium-ion batteries.
Publication Details
Jiang, M., Zhang, F., Zhu, G., Ma, Y., Luo, W., Zhou, T. & Yang, J. (2020). Interface-Amorphized Ti3C2@Si/SiO x@TiO2 Anodes with Sandwiched Structures and Stable Lithium Storage. ACS Applied Materials and Interfaces,