Bioprinting Stem Cells in Hydrogel for In Situ Surgical Application: A Case for Articular Cartilage

RIS ID

142254

Publication Details

Duchi, S., Onofrillo, C., O'Connell, C., Wallace, G., Choong, P. & Di Bella, C. (2020). Bioprinting Stem Cells in Hydrogel for In Situ Surgical Application: A Case for Articular Cartilage. Methods in Molecular Biology, 2140 145-157.

Abstract

Three-dimensional (3D) bioprinting is driving major innovations in the area of cartilage tissue engineering. As an alternative to computer-aided 3D printing, in situ additive manufacturing has the advantage of matching the geometry of the defect to be repaired without specific preliminary image analysis, shaping the bioscaffold within the defect, and achieving the best possible contact between the bioscaffold and the host tissue. Here, we describe an in situ approach that allows 3D bioprinting of human adipose-derived stem cells (hADSCs) laden in 10%GelMa/2%HAMa (GelMa/HAMa) hydrogel. We use coaxial extrusion to obtain a core/shell bioscaffold with high cell viability, as well as adequate mechanical properties for articular cartilage regeneration and repair.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1007/978-1-0716-0520-2_9