3D Printing of Porous Nitrogen-Doped Ti3C2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors

RIS ID

141436

Publication Details

Fan, Z., Wei, C., Yu, L., Xia, Z., Cai, J., Tian, Z., Zou, G., Dou, S. & Sun, J. (2020). 3D Printing of Porous Nitrogen-Doped Ti3C2 MXene Scaffolds for High-Performance Sodium-Ion Hybrid Capacitors. ACS Nano, 14 (1), 867-876.

Abstract

2020 American Chemical Society. 3D printing technology has stimulated a burgeoning interest to fabricate customized architectures in a facile and scalable manner targeting wide ranged energy storage applications. Nevertheless, 3D-printed hybrid capacitor devices synergizing favorable energy/power density have not yet been explored thus far. Herein, we demonstrate a 3D-printed sodium-ion hybrid capacitor (SIC) based on nitrogen-doped MXene (N-Ti3C2Tx) anode and activated carbon cathode. N-Ti3C2Tx affording a well-defined porous structure and uniform nitrogen doping can be obtained via a sacrificial template method. Thus-formulated ink can be directly printed to form electrode architecture without the request of a conventional current collector. The 3D-printed SICs, with a large areal mass loading up to 15.2 mg cm-2, can harvest an areal energy/power density of 1.18 mWh cm-2/40.15 mW cm-2, outperforming the state-of-the-art 3D-printed energy storage devices. Furthermore, our SIC also achieves a gravimetric energy/power density of 101.6 Wh kg-1/3269 W kg-1. This work demonstrates that the 3D printing technology is versatile enough to construct emerging energy storage systems reconciling high energy and power density.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1021/acsnano.9b08030