Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures
RIS ID
136381
Abstract
Heterostructures, which can possess advantages of materials with different properties, have attracted enormous attention in various research fields including solar cells, photocatalysts, and optical electronic devices. In this work, a 2D/3D atomic epitaxial heterostructure with ultrathin BiOCl nanosheets and YF3:Yb, Tm octahedral crystals was fabricated via the halogen atom exchange method in the solution phase. The epitaxial heterointerface can facilitate energy transfer between BiOCl and YF3:Yb, Tm and suppress the energy quenching induced by grain boundaries. By carrying out single-particle confocal characterization, the energy upconverted by YF3:Yb, Tm is quantitatively confirmed to be transferred to ultrathin BiOCl nanosheets. As a result, YF3:Yb, Tm@BiOCl displays outstanding NIR-driven water splitting and waste-water cleaning properties. This study paves the way to fabricate 2D/3D epitaxial heterostructures, which helps to broaden the application of typical 2D materials.
Grant Number
ARC/FT180100585, ARC/LE120100104, ARC/DP160102627
Grant Number
ARC/ LE100100081, ARC/DP170101467, ARC/LE110100099
Additional Grant Number
http://purl.org/au-research/grants/ARC/FT180100585, http://purl.org/au-research/grants/ARC/DP170101467 http://purl.org/au-research/grants/ARC/LE110100099, http://purl.org/au-research/grants/ARC/LE100100081 http://purl.org/au-research/grants/ARC/DP160102627, http://purl.org/au-research/grants/ARC/LE110100099
Publication Details
Wang, L., Cui, D., Ren, L., Zhou, J., Wang, F., Casillas, G., Xu, X., Peleckis, G., Hao, W., Ye, J., Dou, S. Xue., Jin, D. & Du, Y. (2019). Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. Journal of Materials Chemistry A, 7 (22), 13629-13634.