3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application
RIS ID
131705
Abstract
We present for the first time approaches to 3D-printing of nanocellulose hydrogel scaffolds based on double crosslinking, first by in situ Ca2+ crosslinking and post-printing by chemical crosslinking with 1,4-butanediol diglycidyl ether (BDDE). Scaffolds were successfully printed from 1% nanocellulose hydrogels, with their mechanical strength being tunable in the range of 3 to 8 kPa. Cell tests suggest that the 3D-printed and BDDE-crosslinked nanocellulose hydrogel scaffolds supported fibroblast cells' proliferation, which was improving with increasing rigidity. These 3D-printed scaffolds render nanocellulose a new member of the family of promising support structures for crucial cellular processes during wound healing, regeneration and tissue repair.
Grant Number
ARC/CE140100012
Publication Details
Xu, C., Zhang Molino, B., Wang, X., Cheng, F., Xu, W., Molino, P., Bacher, M., Su, D., Rosenau, T., Willfor, S. & Wallace, G. (2018). 3D printing of nanocellulose hydrogel scaffolds with tunable mechanical strength towards wound healing application. Journal of Materials Chemistry B, 6 (43), 7066-7075.