Yolk-Shell-Structured Cu/Fe@γ-Fe2O3 Nanoparticles Loaded Graphitic Porous Carbon for the Oxygen Reduction Reaction

RIS ID

115894

Publication Details

Wang, M., Su, C., Saunders, M., Liang, J., Shao, Z., Wang, S. & Liu, J. (2017). Yolk-Shell-Structured Cu/Fe@γ-Fe2O3 Nanoparticles Loaded Graphitic Porous Carbon for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 34 (10), 1700158-1-1700158-9.

Abstract

Core-shell Cu/γ-Fe 2 O 3 @C and yolk-shell-structured Cu/Fe@γ-Fe 2 O 3 @C particles are prepared by a facile synthesis method using copper oxide as template particles, resorcinol-formaldehyde as the carbon precursor, and iron nitrate solution as the iron source via pyrolysis. With increasing carbonization temperature and time, solid γ-Fe 2 O 3 cores are formed and then transformed into Fe@γ-Fe 2 O 3 yolk-shell-structured particles via Ostwald ripening under nitrogen gas flow. The composition variations are studied, and the formation mechanism is proposed for the generation of the hollow and yolk-shell-structured metal and metal oxides. Moreover, highly graphitic carbons can be obtained by etching the metal and metal oxide nanoparticles through an acid treatment. The electrocatalytic activity for oxygen reduction reaction is investigated on Cu/γ-Fe 2 O 3 @C, Cu/Fe@γ-Fe 2 O 3 @C, and graphitic carbons, indicating comparable or even superior performance to other Fe-based nanocatalysts.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1002/ppsc.201700158