Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor
RIS ID
114777
Abstract
A series of porous carbon spheres with precisely adjustable mesopores (4-16 nm), high specific surface area (SSA, ¿2000 m2 g-1), and submicrometer particle size (¿300 nm) was synthesized through a facile coassembly of diblock polymer micelles with a nontoxic dopamine source and a common postactivation process. The mesopore size can be controlled by the diblock polymer, polystyrene-block-poly(ethylene oxide) (PS-b-PEO) templates, and has an almost linear dependence on the square root of the degree of polymerization of the PS blocks. These advantageous structural properties make the product a promising electrode material for electrochemical capacitors. The electrochemical capacitive performance was studied carefully by using symmetrical cells in a typical organic electrolyte of 1 M tetraethylammonium tetrafluoroborate/acetonitrile (TEA BF4/AN) or in an ionic liquid electrolyte of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), displaying a high specific capacitance of 111 and 170 F g-1 at 1 A g-1, respectively. The impacts of pore size distribution on the capacitance performance were thoroughly investigated. It was revealed that large mesopores and a relatively low ratio of micropores are ideal for realizing high SSA-normalized capacitance. These results provide us with a simple and reliable way to screen future porous carbon materials for electrochemical capacitors and encourage researchers to design porous carbon with high specific surface area, large mesopores, and a moderate proportion of micropores.
Publication Details
Tang, J., Wang, J., Shrestha, L. Kumar., Hossain, M. A., Alothman, Z. Abdullah., Yamauchi, Y. & Ariga, K. (2017). Activated Porous Carbon Spheres with Customized Mesopores through Assembly of Diblock Copolymers for Electrochemical Capacitor. ACS Applied Materials and Interfaces, 9 (22), 18986-18993.