RIS ID
113469
Abstract
The Tb1−xYxMn2Ge2 series (x = 0, 0.1, 0.2) compounds are found to exhibit two magnetic phase transitions with decreasing temperature: from the paramagnetic state to the antiferromagnetic interlayer state at TNinter and from an antiferromagnetic interlayer structure to a collinear ferrimagnetic interlayer structure at TCinter. Compared with the slight change of TNinter (409 K, 410 K and 417 K for x = 0, 0.1 and 0.2 respectively), the replacement of Y for Tb leads to a significant decrease in TCinter from 97.5 K for x = 0 to 74.6 K for x = 0.2. The variation in TCinter can be ascribed to the combination of two effects: (1) chemical pressure and (2) magnetic dilution effect by Y substitution for Tb. Besides, a strong anisotropic magnet-volume effect has been detected around TCinter in all compounds with Δa/a = 0.125%, 0.124% and 0.130% for x = 0, 0.1 and 0.2, respectively while no obvious effect is detected along the c-axis. The maximum magnetic entropy change were found to be −ΔSmax = 9.1 J kg−1 K−1, 11.9 J kg−1 K−1 and 6.3 J kg−1 K−1 with a field change from 0 T to 5 T for x = 0, 0.1, 0.2 respectively.
Publication Details
Fang, C., Li, G., Wang, J., Hutchison, W. D., Ren, Q. Y., Deng, Z., Ma, G., Dou, S., Campbell, S. J. & Cheng, Z. (2017). New insight into magneto-structural phase transitions in layered TbMn2 Ge2-based compounds. Scientific Reports, 7 45814-1-45814-14.