Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles

RIS ID

105438

Publication Details

Schirmer, K. S. U., Esrafilzadeh, D., Thompson, B. C., Quigley, A. F., Kapsa, R. M. I. & Wallace, G. G. (2016). Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles. Journal of Materials Chemistry B, 4 (6), 1142-1149.

Abstract

Continuous composite fibres composed of polypyrrole (PPy) nanoparticles and reduced graphene oxide (rGO) at different mass ratios were fabricated using a single step wet-spinning approach. The electrical conductivity of the composite fibres increased significantly with the addition of rGO. The mechanical properties of the composite fibres also improved by the addition of rGO sheets compared to fibres containing only PPy. The ultimate tensile strength of the fibres increased with the proportion of rGO mass present. The elongation at break was greatest for the composite fibre containing equal mass ratios of PPy nanoparticles and rGO sheets. L929 fibroblasts seeded onto fibres showed no reduction in cell viability. To further assess toxicity, cells were exposed to media that had been used to extract any aqueous-soluble leachates from developed fibre. Overall, these composite fibres show promising mechanical and electrical properties while not significantly impeding cell growth, opening up a wide range of potential applications including nerve and muscle regeneration studies.

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1039/c5tb02130h