Effect of Sn substitution for Co on microstructure and electrochemical performance of AB5 type La0.7Mg0.3Al0.3Mn0.4Co0.5−xSnxNi3.8 (x =0−0.5) alloys

RIS ID

98456

Publication Details

Casini, J., Guo, Z., Liu, H. Kun., Ferreira, E., Faria, R. & Takiishi, H. (2015). Effect of Sn substitution for Co on microstructure and electrochemical performance of AB5 type La0.7Mg0.3Al0.3Mn0.4Co0.5 − xSnxNi3.8 ( x =0−0.5) alloys. Nonferrous Metals Society of China Transactions, 25 (2), 520-526.

Abstract

The effects of substitution of Sn for Co on the microstructure, hydrogen storage and electrochemical discharge capacity of La0.7Mg0.3Al0.3Mn0.4Co0.5 − xSnxNi3.8 (x=0, 0.1, 0.2, 0.3 and 0.5) alloys were investigated using X-ray diffraction (XRD), pressure composition isotherm (PCT) and electrochemical discharge cycle. XRD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests showed that all of alloys are mainly composed of LaNi5 and MgNi2 phases, but when increasing the content of Sn in alloys, the LaNiSn phase appears and microstructure is refined. The PCT showed that increasing substitution of Sn for Co results in decrease of the maximum hydrogen storage capacity from 1.48% (x=0) to 0.85% (x=0.5). The electrochemical tests indicated that the maximum discharge capacity decreases from 337.1 mA·h/g (x=0) to 239.8 mA·h/g (x=0.5); however, the discharge capacity retention at the 100th cycle increases from 70.2% (x=0) to 78.0% (x=0.5).

Please refer to publisher version or contact your library.

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1016/S1003-6326(15)63633-0