RIS ID
89121
Abstract
In an effort to explore the effect of substitution Fe by Cr in NaZn13-type La0.7Pr0.3Fe11.4−xCrxSi1.6 (x = 0, 0.06, 0.12, 0.26, and 0.34) compounds, the structure and magnetic properties have been investigated by high intensity of x-ray and neutron diffraction, scanning electron microscopy, specific heat, and magnetization measurement. It has been found that a substitution of Cr for Fe in this compounds leads to decrease in the lattice parameter a at room temperature but variation on Curie temperature (TC). While the first order nature of magnetic phase transition around TC does not change with increasing Cr content up to x = 0.34. High intensity x-ray and neutron diffraction study at variable temperatures for highest Cr concentration x = 0.34 confirmed the presence of strong magneto-volume effect around TC and indicated the direct evident of coexistence across magnetic transition as characteristic of first order nature. The values of −ΔSM around TC decrease from 17 J kg−1 K−1 for x = 0 to 12 J kg−1 K−1 for x = 0.06 and then increases with further increasing Cr content up to 17.5 J kg−1 K−1 for x = 0.34 under a change of 0-5 T magnetic field. Similar behavior on relative cooling power which is decrease from 390 J kg−1 for x = 0 to 365 J kg−1 for x = 0.06 at the beginning and then increases up to 400 J kg−1 for x = 0.34. From the point of this view with the highest Cr concentration (x = 0.34) exhibits favourable material candidate for magnetic refrigerator application therefore should inspire further study concerning on higher Cr concentration in this compound.
Publication Details
Md Din, M. F., Wang, J. L., Studer, A. J., Gu, Q. F., Zeng, R., Debnath, J. C., Shamba, P., Kennedy, S. J. & Dou, S. X. (2014). Effects of Cr substitution on structural and magnetic properties in La0.7Pr0.3Fe11.4Si1.6 compound. Journal of Applied Physics, 115 (17), 17A942-1-17A942-3.