All-solid-state carbon nanotube torsional and tensile artificial muscles
RIS ID
90558
Abstract
We report electrochemically powered, all-solid-state torsional and tensile artificial yarn muscles using a spinnable carbon nanotube (CNT) sheet that provides attractive performance. Large torsional muscle stroke (53°/mm) with minor hysteresis loop was obtained for a low applied voltage (5 V) without the use of a relatively complex three-electrode electromechanical setup, liquid electrolyte, or packaging. Useful tensile muscle strokes were obtained (1.3% at 2.5 V and 0.52% at 1 V) when lifting loads that are 25 times heavier than can be lifted by the same diameter human skeletal muscle. Also, the tensile actuator maintained its contraction following charging and subsequent disconnection from the power supply because of its own supercapacitor property at the same time. Possible eventual applications for the individual tensile and torsional muscles are in micromechanical devices, such as for controlling valves and stirring liquids in microfluidic circuits, and in medical catheters.
Grant Number
ARC/DP110101073
Publication Details
Lee, J. Ah., Kim, Y. Tae., Spinks, G. M., Suh, D., Lepro, X., Lima, M. D., Baughman, R. H. & Kim, S. Jeong. (2014). All-solid-state carbon nanotube torsional and tensile artificial muscles. Nano Letters: a journal dedicated to nanoscience and nanotechnology, 14 (5), 2664-2669.