Year

2023

Degree Name

Doctor of Philosophy

Department

School of Mechanical, Materials, Mechatronic and Biomedical Engineering

Abstract

Conventional pressure leak testing of buried pipelines compares measurements of pressure with pipe wall temperature. An alternative proposed method uses acoustic velocity measurements to replace pipe wall temperature measurements. Early experiments using this method identified anomalous results of rising acoustic velocities thought to be caused by air solution.

This research investigated the anomalous acoustic velocity measurements by evaluation of acoustic velocity variation with pressure, temperature and air solution. Quiescent air solution rate experiments were carried out in water filled pipes. Computer modelling of the air bubble shape variation with pipe diameter was found to agree with bubble and drop experiments over the pipe diameter range from 100 mm to 1000 mm. Bubbles were found to maintain constant width over a large volume range confirmed by experiments and modelling.

FoR codes (2008)

0913 MECHANICAL ENGINEERING

Share

COinS
 

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.