Degree Name

Doctor of Philosophy


School of Civil, Mining, Environmental, and Architectural Engineering


In July 2005 the Australian Coal Industry’s Research Program (ACARP) commissioned Gary Gibson to identify constraints that would prevent development production rates from achieving full capacity. A “TOP 5” constraint was “The logistics of supply transport distribution and handling of roof support consumables is an issue at older extensive mines immediately while the achievement of higher development rates will compound this issue at most mines.” Then in 2020, Walker, Harvey, Baafi, Kiridena, and Porter were commissioned by ACARP to investigate Australian best practice and progress made since Gibson’s 2005 report. This report was titled: - “Benchmarking study in underground coal mining logistics.” It found that even though logistics continue to be recognised as a critical constraint across many operations particularly at a tactical / day to day level, no strategic thought had been given to logistics in underground coal mines, rather it was always assumed that logistics could keep up with any future planned design and productivity. This subsequently meant that without estimating the impact of any logistical constraint in a life of mine plan, the risk of overvaluing a mining operation is high.

This thesis attempts to rectify this shortfall and has developed a system to strategically identify logistics bottlenecks and the impacts that mine planning parameters might have on these at any point in time throughout a life of mine plan. By identifying any logistics constraints as early as possible, the best opportunity to rectify the problem at the least expense is realised. At the very worst if a logistics constraint was unsolvable then it could be understood, planned for, and reflected in the mine’s ongoing financial valuations. The system developed in this thesis, using a suite of unique algorithms, is designed to “bolt onto” existing mine plans in the XPAC mine scheduling software package, and identify at a strategic level the number of material delivery loads required to maintain planned productivity for a mining operation. Once an event was identified the system then drills down using FlexSim discrete event simulation to a tactical level to confirm the predicted impact and understand if a solution can be transferred back as a long-term solution. Most importantly the system developed in this thesis was designed to communicate to multiple non-technical stakeholders through simple graphical outputs if there is a risk to planned production levels due to a logistics constraint.

FoR codes (2020)

401905 Mining engineering, 350909 Supply chains



Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.