Degree Name

Doctor of Philosophy


School of Electrical, Computer and Telecommunications Engineering


Unmanned Aerial Vehicles (UAVs) or drones are a type of low altitude aerial mobile vehicles. They can be integrated into existing networks; e.g., cellular, Internet of Things (IoT) and satellite networks. Moreover, they can leverage existing cellular or Wi-Fi infrastructures to communicate with one another. A popular application of UAVs is to deploy them as mobile base stations and/or relays to assist terrestrial wireless communications. Another application is data collection, whereby they act as mobile sinks for wireless sensor networks or sensor devices operating in IoT networks. Advantageously, UAVs are cost-effective and they are able to establish line-of-sight links, which help improve data rate. A key concern, however, is that the uplink communications to a UAV may be limited, where it is only able to receive from one device at a time. Further, ground devices, such as those in IoT networks, may have limited energy, which limit their transmit power. To this end, there are three promising approaches to address these concerns, including (i) trajectory optimization, (ii) link scheduling, and (iii) equipping UAVs with a Successive Interference Cancellation (SIC) radio.

Henceforth, this thesis considers data collection in UAV-aided, TDMA and SICequipped wireless networks. Its main aim is to develop novel link schedulers to schedule uplink communications to a SIC-capable UAV. In particular, it considers two types of networks: (i) one-tier UAV communications networks, where a SIC-enabled rotary-wing UAV collects data from multiple ground devices, and (ii) Space-Air-Ground Integrated Networks (SAGINs), where a SIC-enabled rotary-wing UAV offloads collected data from ground devices to a swarm of CubeSats. A CubeSat then downloads its data to a terrestrial gateway. Compared to one-tier UAV communications networks, SAGINs are able to provide wide coverage and seamless connectivity to ground devices in remote and/or sparsely populated areas.

FoR codes (2020)

400602 Data communications, 400606 Satellite communications



Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.