Year

2021

Degree Name

Doctor of Philosophy

Department

School of Mechanical, Materials, Mechatronic and Biomedical Engineering

Abstract

In an increasingly automated world, interest in the field of robotics is surging, with an exciting branch of this area being legged robotics. These biologically inspired robots have leg-like limbs which enable locomotion, suited to challenging terrains which wheels struggle to conquer. While it has been quite some time since the idea of a legged machine was first made a reality, this technology has been modernised with compliant legs to improve locomotion performance. Recently, developments in biological science have uncovered that humans and animals alike control their leg stiffness, adapting to different locomotion conditions. Furthermore, as these studies highlighted potential to improve upon the existing compliant-legged robots, modern robot designs have seen implementation of variable stiffness into their legs. As this is quite a new concept, few works have been published which document such designs, and hence much potential exists for research in this area. As a promising technology which can achieve variable stiffness, magnetorheological (MR) smart materials may be ideal for use in robot legs. In particular, recent advances have enabled the use of MR fluid (MRF) to facilitate variable stiffness in a robust manner, in contrast to MR elastomer (MRE).

Developed in this thesis is what was at the time the first rotary MR damper variable stiffness mechanism. This is proposed by the author for use within a robot leg to enable rapid stiffness control during locomotion. Based its mechanics and actuation, the leg is termed the magnetorheological variable stiffness actuator leg mark-I (MRVSAL-I). The leg, with a C-shaped morphology suited to torque actuation is first characterised through linear compression testing, demonstrating a wide range of stiffness variation. This variation is in response to an increase in electric current supplied to the internal electromagnetic coils of the MR damper. A limited degrees-of-freedom (DOF) bipedal locomotion platform is designed and manufactured to study the locomotion performance resulting from the variable stiffness leg. It is established that optimal stiffness tuning of the leg could achieve reduced mechanical cost of transport (MCOT), thereby improving locomotion performance. Despite the advancements to locomotion demonstrated, some design issues with the leg required further optimisation and a new leg morphology.

This thesis is unavailable until Tuesday, July 12, 2022

Share

COinS
 

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.