PrivacyEAFL: Privacy-Enhanced Aggregation for Federated Learning in Mobile Crowdsensing

Publication Name

IEEE Transactions on Information Forensics and Security


Mobile crowdsensing (MCS) combined with federated learning, as an emerging data collection and intelligent process paradigm, has received lots of attention in social networks and mobile Internet-of-Things, etc. However, as the openness and transparent of mobile crowdsensing tasks, federated learning model and training samples for crowdsensing data still face enormous privacy revealing risks, and it will reduce the willingness of people or nodes to actively participate and provide data in MCS. In this paper, we present a Privacy-Enhanced Aggregation for Federated Learning in MCS, namely PrivacyEAFL, to implement the training of federated learning under mobile crowdsensing system in terms of privacy protection of all participants. Firstly, considering that the crowdsensing server might share information with some participants to obtain and leak some local models, we design a collusion-resistant data aggregation approach by combining homomorphic cryptosystem and hashed Diffie-Hellman key exchange protocol. Secondly, we design a data encoding and aggregating method with data packing which can reduce the computation cost and communication overhead for the system. Thirdly, as the number of participants’ samples are dynamically changeable in MCS, we design a sample number protection method that can implement the security and privacy of the number of training samples owned by participants. Finally, we provide the experimental results on real-world datasets (i.e, MNIST and Car Evaluation) with crowdsensing devices under Raspberry-Pi 4B and Redmi-K30 Pro, respectively, and the results demonstrate that our scheme is more efficient and practical in secure and privacy-enhanced model aggregation for federated learning in mobile crowdsensing.

Open Access Status

This publication is not available as open access



Link to publisher version (DOI)