Room Temperature Ion Beam Synthesis of Ultra-Fine Molybdenum Carbide Nanoparticles: Toward a Scalable Fabrication Route for Earth-Abundant Electrodes

Publication Name



Molybdenum carbides are promising low-cost electrocatalysts for electrolyzers, fuel cells, and batteries. However, synthesis of ultrafine, phase-pure carbide nanoparticles (diameter < 5 nm) with large surface areas remains challenging due to uncontrollable agglomeration that occurs during traditional high temperature syntheses. This work presents a scalable, physical approach to synthesize molybdenum carbide nanoparticles at room temperature by ion implantation. By tuning the implantation conditions, various molybdenum carbide phases, stoichiometries, and nanoparticle sizes can be accessed. For instance, molybdenum ion implantation into glassy carbon at 30 keV energy and to a fluence of 9 × 1016 at cm−2 yields a surface η-Mo3C2 with a particle diameter of (10 ± 1) nm. Molybdenum implantation into glassy carbon at 60 keV to a fluence of 6 × 1016 at cm−2 yields a buried layer of ultrafine γ’-MoC/η-MoC nanoparticles. Carbon ion implantation at 20 keV into a molybdenum thin film produces a 40 nm thick layer primarily composed of β-Mo2C. The formation of nanoparticles in each molybdenum carbide phase is explained based on the Mo-C phase diagram and Monte-Carlo simulations of ion-solid interactions invoking the thermal spike model. The approaches presented are widely applicable for synthesis of other transition metal carbide nanoparticles as well.

Open Access Status

This publication is not available as open access

Funding Number


Funding Sponsor

New Zealand Government


Link to publisher version (DOI)