A Hybrid Approach to Rock Pre-conditioning Using Non-explosive Demolition Agents and Hydraulic Stimulation

Publication Name

Rock Mechanics and Rock Engineering


This study presents a novel approach to rock pre-conditioning to promote the sustainability of low-grade ore mining applications such as in-situ recovery and cave mining. The proposed method involves a two-stage hybrid approach, utilizing soundless cracking demolition agents (SCDAs) to initiate radial fractures in a predrilled host rock, followed by hydraulic stimulation to extend the fractures. SCDA injection in the first stage creates multiple radial fractures around the injection well. However, the extent of fractures is limited to the near vicinity of the injection well. To overcome this limitation, the second stage involves the application of hydraulic stimulation to extend the initiated fractures, which produces a greater fracture density compared to pure hydraulic stimulation. The concept was assessed using a fully coupled hydro-mechanical discrete element model that simulated the hybrid fracturing method on crystalline rock at the grain scale. The results indicate that the proposed method can create a high density of fractures around the injection well. Additionally, we identify and evaluate the key factors affecting the performance of the proposed method, including rock mass heterogeneity, stress anisotropy, and pre-existing defects, providing valuable insights for further experimental design and execution. Overall, the study offers promising results for a potential solution to enhance the efficiency of low-grade ore mining through the hybrid rock pre-conditioning method.

Open Access Status

This publication may be available as open access

Funding Sponsor

Alexander von Humboldt-Stiftung



Link to publisher version (DOI)