Evaluating the geometric and dosimetric impact of applying anisotropic CTV to PTV margins in image-guided post-prostatectomy radiation therapy

Publication Name

Journal of Medical Imaging and Radiation Oncology


Introduction: Guidelines for clinical target volume (CTV) to planning target volume (PTV) margins in post-prostatectomy radiation therapy (PPRT) are varied and often not clearly defined. Assessment of appropriateness of margins is commonly measured on prevalence of geographic miss. Methods: Cone-beam CT (CBCT) images (n = 92) for 10 PPRT patients were incorporated to provide on-treatment information on the appropriateness of six different CTV expansion margins in terms of geographic miss and change in dose-volume statistics for CTV, rectum and bladder. Uniform margins included 10 mm, 5 mm, 10 mm + 5 mm posteriorly and 5 mm + 3 mm posteriorly. In addition, two anisotropic margins were evaluated by separating the superior and inferior portions of the CTV before expansion. Treatment plans were created for each PTV retrospectively. Results: The frequency of geographic miss was the smallest for the large uniform expansions but resulted in the highest organ-at-risk (OAR) doses. Geographic miss in the smaller uniform and anisotropic PTVs was more prevalent but commonly to a small volume < 1% of CTV. When averaged over all CBCT fractions, V95% dose for all CTV margins remained > 99%. The anisotropic expansions generated smaller irradiated target volumes and consequently saw up to 7.3% reduction in bladder dose when compared with similar uniform expansion margins. Conclusion: Supplementing the incidence of geographic miss with dosimetric information on target coverage and OAR doses provides more informed assessment of the appropriateness of different CTV expansion margins. Our study extends the evaluation of anisotropic margins for PPRT.

Open Access Status

This publication is not available as open access



Link to publisher version (DOI)