Nano and microplastics occurrence in wastewater treatment plants: A comprehensive understanding of microplastics fragmentation and their removal

Publication Name



Nano/microplastic (NP/MP) pollution is a growing concern for the water environment. Wastewater treatment plants (WWTPs) are considered the major recipients of MP before discharging into local waterbodies. MPs enter WWTPs mainly from synthetic fibers through washing activities and personal care products. To control and prevent NP/MP pollution, it is essential to have a comprehensive understanding of their characteristics, fragmentation mechanisms, and the effectiveness of the current treatment processes used in WWTPs for NP/MP removal. Therefore, the objectives of this study are to (i) understand the detailed mapping of NP/MP in the WWTP, (ii) understand the fragmentation mechanisms of MP into NP, and (iii) investigate the removal efficiency of NP/MP by existing processes in the WWTP. This study found that fiber is the dominant shape of MP, and polyethylene, polypropylene, polyethylene terephthalate, and polystyrene are the major polymer type of MP in wastewater samples. Crack propagation and mechanical breakdown of MP due to water shear forces induced by treatment facilities (e.g., pumping, mixing, and bubbling) could be the major causes for NP generation in the WWTP. Conventional wastewater treatment processes are ineffective for the complete removal of MPs. Although these processes are capable of removing ∼95% of MPs, they tend to accumulate in sludge. Thus, a significant number of MPs may still be released into the environment from WWTPs on a daily basis. Therefore, this study suggested that using DAF process in the primary treatment unit can be an effective strategy to control MP in the initial stage before it goes to the secondary and tertiary stage.

Open Access Status

This publication is not available as open access



Article Number


Funding Number


Funding Sponsor

Australian Research Council



Link to publisher version (DOI)