A Stability Analysis for the Reaction Torque Observer-based Sensorless Force Control Systems

Publication Name

Proceedings - 2023 IEEE International Conference on Mechatronics, ICM 2023


This paper proposes a new stability analysis for the Reaction Torque Observer (RTOb) based robust force control systems in the discrete-time domain. The robust force controller is implemented by employing a Disturbance Observer (DOb) to suppress disturbances, such as friction and hysteresis, in an innerloop and another disturbance observer, viz RTOb, to estimate contact forces without using a force sensor. Since the RTOb-based robust force controllers are always implemented using computers and/or microcontrollers, this paper proposes a stability analysis in the discrete-time domain. It is shown that the bandwidth of the DOb is limited not only by the noise of velocity measurement but also by the waterbed effect. It is also shown that the stability of the robust force controller may significantly deteriorate when the design parameters of the RTOb are not properly tuned. For example, the robust force controller may have a non-minimum phase zero(s) as the design parameter of the identified inertia (torque coefficient) of the RTOb is increased (decreased). This may lead to poor stability and performance in force control applications. The proposed stability analysis conducted in the discrete-time domain is verified by simulations and experiments.

Open Access Status

This publication may be available as open access



Link to publisher version (DOI)