Defect-Healing Induced Monoclinic Iron-Based Prussian Blue Analogs as High-Performance Cathode Materials for Sodium-Ion Batteries

Publication Name



Prussian blue analogs (PBAs) have attracted wide interest as a class of ideal cathodes for rechargeable sodium-ion batteries due to their low cost, high theoretical capacity, and facile synthesis. Herein, a series of highly crystalline Fe-based PBAs (FeHCF) cubes, where HCF stands for the hexacyanoferrate, is synthesized via a one-step pyrophosphate-assisted co-precipitation method. By applying this proposed facile crystallization-controlled method to slow down the crystallization process and suppress the defect content of the crystal framework of the PBAs, the as-prepared materials demonstrate high crystallization and a sodium-rich induced rhombohedral phase. As a result, the as prepared FeHCF can deliver a high specific capacity of up to 152.0 mA h g−1 (achieving ≈90% of its theoretical value) and an excellent rate capability with a high-capacity retention ratio of 88% at 10 C, which makes it one of the most competitive candidates among the cathodes reported regarding both capacity and rate performance. A highly reversible three-phase-transition sodium-ion storage mechanism has been revealed via multiple in situ techniques. Furthermore, the full cells fabricated with as-prepared cathode and commercial hard carbon anode exhibit excellent compatibility which shows great prospects for application in the large-scale energy storage systems.

Open Access Status

This publication is not available as open access

Funding Number


Funding Sponsor

Australian Research Council



Link to publisher version (DOI)