Extreme phonon anharmonicity underpins superionic diffusion and ultralow thermal conductivity in argyrodite Ag8SnSe6

Publication Name

Nature Materials


Ultralow thermal conductivity and fast ionic diffusion endow superionic materials with excellent performance both as thermoelectric converters and as solid-state electrolytes. Yet the correlation and interdependence between these two features remain unclear owing to a limited understanding of their complex atomic dynamics. Here we investigate ionic diffusion and lattice dynamics in argyrodite Ag8SnSe6 using synchrotron X-ray and neutron scattering techniques along with machine-learned molecular dynamics. We identify a critical interplay of the vibrational dynamics of mobile Ag and a host framework that controls the overdamping of low-energy Ag-dominated phonons into a quasi-elastic response, enabling superionicity. Concomitantly, the persistence of long-wavelength transverse acoustic phonons across the superionic transition challenges a proposed ‘liquid-like thermal conduction’ picture. Rather, a striking thermal broadening of low-energy phonons, starting even below 50 K, reveals extreme phonon anharmonicity and weak bonding as underlying features of the potential energy surface responsible for the ultralow thermal conductivity (<0.5 W m−1 K−1) and fast diffusion. Our results provide fundamental insights into the complex atomic dynamics in superionic materials for energy conversion and storage.

Open Access Status

This publication is not available as open access

Funding Number


Funding Sponsor

National Science Foundation


Link to publisher version (DOI)