Enhanced Cycling Performance of a Li-Excess Li2CuO2 Cathode Additive by Cosubstitution Nanoarchitectonics of Ni and Mn for Lithium-Ion Batteries

Publication Name

ACS Applied Materials and Interfaces

Abstract

The adoption of Li2CuO2 has drawn interest as a Li-excess cathode additive for compensating irreversible Li+ loss in anodes during cycling, which would move forward high-energy-density lithium-ion batteries (LIBs). Li2CuO2 provides a high irreversible capacity (>200 mAh g-1) in the first cycle and an operating voltage comparable with commercial cathode materials, but its practical use is still restricted by the structural instability and spontaneous oxygen (O2) evolution, resulting in poor overall cycling performance. It is thus crucial to reinforce the structure of Li2CuO2 to make it more reliable as a cathode additive for charge compensation. Pursuing the structural stability of Li2CuO2, herein, we demonstrate cosubstitution by heteroatoms, such as nickel (Ni) and manganese (Mn), for improving the structural stability and electrochemical performance of Li2CuO2. Such an approach effectively enhances the reversibility of Li2CuO2 by suppressing continuous structural degradation and O2 gas evolution during cycling. Our findings provide new conceptual pathways for developing advanced cathode additives for high-energy LIBs.

Open Access Status

This publication is not available as open access

Funding Number

NRF-2020R1A2C1005852

Funding Sponsor

Ministry of Science, ICT and Future Planning

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1021/acsami.2c22125