Particle Swarm Optimised Controller for Solid-State Transfer Switch Towards Fast Power Transfer and PQ Mitigation

Publication Name

Conference Record - IAS Annual Meeting (IEEE Industry Applications Society)

Abstract

This study proposes a solid-state transfer switch (SSTS) using fuzzy logic controller (FLC) design approach for enhancing the productivity and effectiveness of FLCs under harmonics conditions of a non-linear load using particle swarm optimization (PSO). A PSO-based FLC (PSOF) fitness function is also used to optimise and reduce the MSE to enhance the load transfer performance in a short period of time. The PSOF approach eliminates the time-consuming conventional trial-and-error method of deriving membership functions (MFs). Based on the fitness function evaluation findings, the created adaptive MFs are incorporated into voltage error and rate of change of voltage error for input and output. A harmonic filter is used to remove unwanted harmonic components induced by linear and nonlinear loads. To make sure the proposed control system works, the results are looked at both with and without PSO. The obtained transfer times were reduced by about 2ms, 4.35ms, 3.68ms and 3.56ms for 100%, 50%, 25% and 10% respectively, by optimising the fuzzy based system with PSO. Optimisation resulted in a total transfer time of 0.5ms, 8.72ms, 7.88ms and 7.32ms for 100%, 50%, 25% and 10% voltage sag, respectively. The design procedure and accuracy of the developed FLC are illustrated and investigated via simulation tests for the SSTS system. Results show that the optimised fuzzy controller is better than those obtained without the PSO algorithm in all tested cases in terms of transfer time and detection time and harmonic reduction.

Open Access Status

This publication is not available as open access

Volume

2022-October

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1109/IAS54023.2022.9940031