Prior Exposure to Dynamic Visual Displays Reduces Vection Onset Latency

Publication Name

Multisensory Research


While compelling illusions of self-motion (vection) can be induced purely by visual motion, they are rarely experienced immediately. This vection onset latency is thought to represent the time required to resolve sensory conflicts between the stationary observer-s visual and nonvisual information about self-motion. In this study, we investigated whether manipulations designed to increase the weightings assigned to vision (compared to the nonvisual senses) might reduce vection onset latency. We presented two different types of visual priming displays directly before our main vection-inducing displays: (1) 'random motion- priming displays - designed to pre-activate general, as opposed to self-motion-specific, visual motion processing systems; and (2) 'dynamic no-motion- priming displays - designed to stimulate vision, but not generate conscious motion perceptions. Prior exposure to both types of priming displays was found to significantly shorten vection onset latencies for the main self-motion display. These experiments show that vection onset latencies can be reduced by pre-activating the visual system with both types of priming display. Importantly, these visual priming displays did not need to be capable of inducing vection or conscious motion perception in order to produce such benefits.

Open Access Status

This publication may be available as open access





First Page


Last Page


Funding Number


Funding Sponsor

Japan Society for the Promotion of Science



Link to publisher version (DOI)