Small beams, fast predictions: a comparison of machine learning dose prediction models for proton minibeam therapy

Publication Name

Medical Physics


Background: Dose calculations for novel radiotherapy cancer treatments such as proton minibeam radiation therapy is often done using full Monte Carlo (MC) simulations. As MC simulations can be very time consuming for this kind of application, deep learning models have been considered to accelerate dose estimation in cancer patients. Purpose: This work systematically evaluates the dose prediction accuracy, speed and generalization performance of three selected state-of-the-art deep learning models for dose prediction applied to the proton minibeam therapy. The strengths and weaknesses of those models are thoroughly investigated, helping other researchers to decide on a viable algorithm for their own application. Methods: The following recently published models are compared: first, a 3D U-Net model trained as a regression network, second, a 3D U-Net trained as a generator of a generative adversarial network (GAN) and third, a dose transformer model which interprets the dose prediction as a sequence translation task. These models are trained to emulate the result of MC simulations. The dose depositions of a proton minibeam with a diameter of 800μm and an energy of 20–100 MeV inside a simple head phantom calculated by full Geant4 MC simulations are used as a case study for this comparison. The spatial resolution is 0.5 mm. Special attention is put on the evaluation of the generalization performance of the investigated models. Results: Dose predictions with all models are produced in the order of a second on a GPU, the 3D U-Net models being fastest with an average of 130 ms. An investigated 3D U-Net regression model is found to show the strongest performance with overall 61.0 (Formula presented.) 0.5% of all voxels exhibiting a deviation in energy deposition prediction of less than 3% compared to full MC simulations with no spatial deviation allowed. The 3D U-Net models are observed to show better generalization performance for target geometry variations, while the transformer-based model shows better generalization with regard to the proton energy. Conclusions: This paper reveals that (1) all studied deep learning models are significantly faster than non-machine learning approaches predicting the dose in the order of seconds compared to hours for MC, (2) all models provide reasonable accuracy, and (3) the regression-trained 3D U-Net provides the most accurate predictions.

Open Access Status

This publication may be available as open access





First Page


Last Page


Funding Number


Funding Sponsor

National Health and Medical Research Council



Link to publisher version (DOI)