Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging

Publication Name

Nature Communications

Abstract

Titanium carbide MXene combines high mechanical and electrical properties and low infrared emissivity, making it of interest for flexible electromagnetic interference (EMI) shielding and thermal camouflage film materials. Conventional wisdom holds that large MXene is the preferable building block to assemble high-performance films. However, the voids in the films comprising large MXene degrade their properties. Although traditional crosslinking strategies can diminish the voids, the electron transport between MXene flakes is usually disrupted by the insulating polymer bonding agents, reducing the electrical conductivity. Here we demonstrate a sequential densification strategy to synergistically remove the voids between MXene flakes while strengthening the interlayer electron transport. Small MXene flakes were first intercalated to fill the voids between multilayer large flakes, followed by interfacial bridging of calcium ions and borate ions to eliminate the remaining voids, including those between monolayer flakes. The obtained MXene films are compact and exhibit high tensile strength (739 MPa), Young’s modulus (72.4 GPa), electrical conductivity (10,336 S cm−1), and EMI shielding capacity (71,801 dB cm2 g−1), as well as excellent oxidation resistance and thermal camouflage performance. The presented strategy provides an avenue for the high-performance assembly of other two-dimensional flakes.

Open Access Status

This publication may be available as open access

Volume

13

Issue

1

Article Number

7340

Funding Number

21273017

Funding Sponsor

National Natural Science Foundation of China

Share

COinS
 

Link to publisher version (DOI)

http://dx.doi.org/10.1038/s41467-022-35226-0