Synchronous Dual Electrolyte Additive Sustains Zn Metal Anode with 5600 h Lifespan

Publication Name

Angewandte Chemie - International Edition


Despite conspicuous merits of Zn metal anodes, the commercialization is still handicapped by rampant dendrite formation and notorious side reaction. Manipulating the nucleation mode and deposition orientation of Zn is a key to rendering stabilized Zn anodes. Here, a dual electrolyte additive strategy is put forward via the direct cooperation of xylitol (XY) and graphene oxide (GO) species into typical zinc sulfate electrolyte. As verified by molecular dynamics simulations, the incorporated XY molecules could regulate the solvation structure of Zn2+, thus inhibiting hydrogen evolution and side reactions. The self-assembled GO layer is in favor of facilitating the desolvation process to accelerate reaction kinetics. Progressive nucleation and orientational deposition can be realized under the synergistic modulation, enabling a dense and uniform Zn deposition. Consequently, symmetric cell based on dual additives harvests a highly reversible cycling of 5600 h at 1.0 mA cm−2/1.0 mAh cm−2.

Open Access Status

This publication is not available as open access


Link to publisher version (DOI)