Interface challenges and optimization strategies for aqueous zinc-ion batteries

Publication Name

Journal of Energy Chemistry


Aqueous zinc-ion batteries have advantages over lithium-ion batteries, such as low cost, and good safety. However, their development is currently facing several challenges. One of the main critical challenges is their poor electrode–electrolyte interface. Addressing this requires understanding the physics and chemistry at the electrode–electrolyte interface, including the cathode-electrolyte interface and anode-electrolyte interface. This review first identifies and analyses the interfacial challenges of aqueous zinc-ion batteries. Then, it discusses the design strategies for addressing the defined interfacial issues from the perspectives of electrolyte optimization, electrode modification, and separator improvement. Finally, it provides corrective recommendations and strategies for the rational design of electrode–electrolyte interface in aqueous zinc-ion batteries towards their high-performance and reliable energy storage.

Open Access Status

This publication is not available as open access



First Page


Last Page


Funding Number


Funding Sponsor

Australian Research Council



Link to publisher version (DOI)