Title
High Energy Storage Performance of PZO/PTO Multilayers via Interface Engineering
Publication Name
ACS Applied Materials and Interfaces
Abstract
Antiferroelectric thin-film capacitors with ultralow remanent polarization and fast discharge speed have attracted extensive attention for energy storage applications. A multilayer heterostructure is considered to be an efficient approach to enhance the breakdown strength and improve the functionality. Here, we report a high-performance multilayer heterostructure (PbZrO3/PbTiO3)n with a maximum recoverable energy storage density of 36.4 J/cm3 due to its high electric breakdown strength (2.9 MV/cm) through the heterostructure strategy. The positive effect of interfacial blockage and the negative effect of local strain defects competitively affect the breakdown strength, showing an inflection point at n = 3. The atomic-scale characterizations reveal the underlying microstructure mechanism of the interplay between the heterointerface dislocations and the decreased energy storage performance. This work offers the potential of well-designed multilayers with high energy storage performance through heterostructure engineering.
Open Access Status
This publication is not available as open access
Volume
15
Issue
5
First Page
7157
Last Page
7164
Funding Number
62174055
Funding Sponsor
National Natural Science Foundation of China