A taxonomy for mining and classifying privacy requirements in issue reports

Publication Name

Information and Software Technology


Context: Digital and physical trails of user activities are collected over the use of software applications and systems. As software becomes ubiquitous, protecting user privacy has become challenging. With the increase of user privacy awareness and advent of privacy regulations and policies, there is an emerging need to implement software systems that enhance the protection of personal data processing. However, existing data protection and privacy regulations provide key principles in high-level, making it difficult for software engineers to design and implement privacy-aware systems. Objective: In this paper, we develop a taxonomy that provides a comprehensive set of privacy requirements based on four well-established personal data protection regulations and privacy frameworks, the General Data Protection Regulation (GDPR), ISO/IEC 29100, Thailand Personal Data Protection Act (Thailand PDPA) and Asia-Pacific Economic Cooperation (APEC) privacy framework. Methods: These requirements are extracted, refined and classified (using the goal-based requirements analysis method) into a level that can be used to map with issue reports. We have also performed a study on how two large open-source software projects (Google Chrome and Moodle) address the privacy requirements in our taxonomy through mining their issue reports. Results: The paper discusses how the collected issues were classified, and presents the findings and insights generated from our study. Conclusion: Mining and classifying privacy requirements in issue reports can help organisations be aware of their state of compliance by identifying privacy requirements that have not been addressed in their software projects. The taxonomy can also trace back to regulations, standards and frameworks that the software projects have not complied with based on the identified privacy requirements.

Open Access Status

This publication is not available as open access



Article Number




Link to publisher version (DOI)