Investigation of a Novel Hydrogen Depressurization Structure Constituted by an Orifice Plate with Tesla-Type Channels

Publication Name



A hydrogen depressurization system is required to supply the hydrogen to the fuel cell stack from the storage. In this study, a Tesla-type depressurization construction is proposed. Parallel Tesla-type channels are integrated with the traditional orifice plate structure. A computational fluid dynamics (CFD) model is applied to simulate high-pressure hydrogen flow through the proposed structure, using a commercial software package, ANSYS-Fluent (version 19.2, ANSYS, Inc. Southpointe, Canonsburg, PA, USA). The Peng–Robinson (PR) equation of state (EoS) is incorporated into the CFD model to provide an accurate thermophysical property estimation. The construction is optimized by the parametric analysis. The results show that the pressure reduction performance is improved greatly without a significant increase in size. The flow impeding effect of the Tesla-type orifice structure is primarily responsible for the pressure reduction improvement. To enhance the flow impeding effect, modifications are introduced to the Tesla-type channel and the pressure reduction performance has been further improved. Compared to a standard orifice plate, the Tesla-type orifice structure can improve the pressure reduction by 237%. Under low inlet mass flow rates, introduction of a secondary Tesla-type orifice construction can achieve better performance of pressure reduction. Additionally, increasing parallel Tesla-type channels can effectively reduce the maximum Mach number. To further improve the pressure reduction performance, a second set of Tesla-type channels can be introduced to form a two-stage Tesla-type orifice structure. The study provides a feasible structure design to achieve high-efficiency hydrogen depressurization in hydrogen fuel cell vehicles (HFCVs).

Open Access Status

This publication may be available as open access





Article Number




Link to publisher version (DOI)