From Many to One: Consensus Inference in a MIP

Publication Name

Geophysical Research Letters


A Model Intercomparison Project (MIP) consists of teams who estimate the same underlying quantity (e.g., temperature projections to the year 2070). A simple average of the ensemble of the teams' outputs gives a consensus estimate, but it does not recognize that some outputs are more variable than others. Statistical analysis of variance (ANOVA) models offer a way to obtain a weighted frequentist consensus estimate of outputs with a variance that is the smallest possible. Modulo dependence between MIP outputs, the ANOVA approach weights a team's output inversely proportional to its variance, from which optimally weighted estimates follow. ANOVA weights can also provide a prior distribution for Bayesian Model Averaging of the MIP outputs when external evaluation data are available. We use a MIP of carbon-dioxide-flux inversions to illustrate the ANOVA-based weighting and subsequent frequentist consensus inferences.

Open Access Status

This publication may be available as open access





Article Number


Funding Number


Funding Sponsor

National Aeronautics and Space Administration



Link to publisher version (DOI)