Prediction of Hydraulic Blockage at Culverts using Lab Scale Simulated Hydraulic Data

Publication Name

Urban Water Journal


Blockage of culverts causes reduction in hydraulic capacity and is one of the main contributors to trigger urban flooding. However, the highly non-linear nature of debris interaction during the flood and lack of blockage-related data from actual flooding events make conventional numerical modelling almost impossible. Literature investigating blockage phenomena reports blockage as a complex hydraulic process, which suggests exploring adaptive solutions using latest technologies. In this context, motivated by the success of data-driven algorithms, in this article, four data driven models (i.e., K-NN, ANN, SVR, 1D-CNN) are implemented to predict the hydraulic blockage at culverts. A new numerical Hydraulics-Lab Blockage Dataset (HBD) is established from a series of lab-scale hydraulic experiments. From the experimental investigations, the ANN model was reported as the best with a R 2 score of 0.95. A potential use-case of presented research for real-world application is also discussed to demonstrate the practical feasibility.

Funding Number


Funding Sponsor

University of Wollongong



Link to publisher version (DOI)