LoFGAN: Fusing Local Representations for Few-shot Image Generation

Publication Name

Proceedings of the IEEE International Conference on Computer Vision


Given only a few available images for a novel unseen category, few-shot image generation aims to generate more data for this category. Previous works attempt to globally fuse these images by using adjustable weighted coefficients. However, there is a serious semantic misalignment between different images from a global perspective, making these works suffer from poor generation quality and diversity. To tackle this problem, we propose a novel Local-Fusion Generative Adversarial Network (LoFGAN) for few-shot image generation. Instead of using these available images as a whole, we first randomly divide them into a base image and several reference images. Next, LoFGAN matches local representations between the base and reference images based on semantic similarities, and replaces the local features with the closest related local features. In this way, LoFGAN can produce more realistic and diverse images at a more fine-grained level, and simultaneously enjoy the characteristic of semantic alignment. Furthermore, a local reconstruction loss is also proposed, which can provide better training stability and generation quality. We conduct extensive experiments on three datasets, which successfully demonstrates the effectiveness of our proposed method for few-shot image generation and downstream visual applications with limited data. Code is available at https://github.com/edward3862/LoFGAN-pytorch.

Open Access Status

This publication is not available as open access

First Page


Last Page


Funding Number


Funding Sponsor

National Natural Science Foundation of China



Link to publisher version (DOI)