Smartphone user tracking by incorporating user orientation using a double-layer HMM

Publication Name

IEEE Transactions on Vehicular Technology


We consider the problem of localizing a smartphone user using received signal strength (RSS) measured by a set of known network nodes in a harsh indoor environment. While the RSS of a wireless signal can be conveniently accessed, using it to estimate location is nontrivial in the presence of multipath propagation, shadowing and radio interference. Auxiliary information, such as the indoor building map and users orientation information, potentially can help to improve localization performance. As the indoor layout is usually known as a priori, user moving direction or user orientation in a given indoor map may contain valuable information to assist for reducing location ambiguities at estimation, typically when the radio signal channel is corrupted with noise. In this paper, we propose a double-layer hidden Markov model (DHMM) within a Bayesian learning framework for combining user orientation information and processing RSS data in the localization process to deal with RSS fluctuations induced by human body shadowing and multipath interference. Simulation and experimental results show that incorporating user orientation can potentially provide promising indoor positioning results.

Open Access Status

This publication is not available as open access



Link to publisher version (DOI)